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Abstract
We have adapted the transition path sampling algorithm for the study of activated
diffusive processes in complex systems, in which the system has to overcome
a high and rough free energy barrier. The new scheme is based on the
stochastic shooting procedure and employs molecular dynamics trajectories
with an Andersen thermostat as a noise generator. The algorithm is illustrated
on a diffusive process in a dense Lennard-Jones fluid.

1. Introduction

Over the past few years, transition path sampling (TPS) has proved to be a viable method
for studying activated processes in complex systems that cannot be investigated with
straightforward molecular simulation techniques [1–7]. The major advantage of TPS is that
one does not have to impose reaction coordinates on the system, but rather extracts these from
the simulation results. Several complex processes have been studied so far and have been
recently reviewed in [5].

The TPS method is based on the concept of the transition path ensemble, the collection
of all possible dynamical pathways starting in a reactant state A and arriving in a product state
B within a certain time [6]. The path ensemble can be sampled by an efficient Monte Carlo
procedure called ‘shooting’. This procedure generates new trial paths in the ensemble from
an existing trajectory by altering the system coordinates and/or momenta slightly at a random
time along the trajectory, and integrating the equations of motion forward and backward in
time. The trial path is accepted or rejected with a suitable acceptance criterion. The method
works because the paths diverge quickly from the old trajectory due to the chaotic nature of the
dynamics, and because the stable states A and B are attractors so the probability of obtaining
a reactive path is still reasonable. Problems with the shooting version of TPS arise, however,
if one wants to sample long deterministic trajectories over rough energy landscapes that cause
the process to behave more diffusively. Diffusive transitions of this type are found in, for
example, crystal nucleation or protein folding. The original shooting method is bound to fail
for such barriers, because when the path is becoming too long, the old and the new trajectories
will have diverged completely before the other basin of attraction is reached. In that case, a
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small change in momenta will cause the forward as well as the backward trajectory to return
to the same stable region. These nonreactive trajectories will make up the majority of the trial
moves.

In this paper, we propose a new algorithm based on a stochastic TPS scheme, employing
deterministic molecular dynamics (MD) trajectories with an Andersen thermostat as a noise
generator [8] to increase the sampling efficiency. We will illustrate the application of this new
algorithm on a simple model system.

Other methods have been developed to study diffusive barriers in complex systems. One
of them is the stochastic path approach of Elber and co-workers [9, 10] and Eastman et al
[11]. These methods are based on the Onsager–Machlup path action using very large time
steps. This approach generates a path ensemble as a collection of trajectories, but these paths
do not correspond to a microscopic dynamical rule [6]. Important information concerning
e.g. solvent dynamics is lost in these methods, but is retained using the TPS techniques.

The paper is organized as follows. In section 2 we demonstrate the failure of the original
shooting algorithm. This is followed by a description and illustration of the new TPS scheme
in section 3. We end with concluding remarks.

2. Problems with diffusive barriers

2.1. Instability of long trajectories

As described in [4, 6] the TPS algorithm can be based on deterministic (Newtonian) trajectories
as is done here, or, alternatively, stochastic Langevin or Monte Carlo trajectories. In the
case of complex systems such as biomolecules undergoing conformational changes or crystal
nucleation the use of deterministic trajectories as generated by MD has some advantages,
such as the availability of efficient software packages. However, just because of the system’s
complexity, problems can arise with the instability of the dynamics. The TPS scheme relies on
the reproducibility of trajectories, meaning that when the equations of motion are integrated
forward and backward in time there should be a reasonable chance of obtaining a reactive
pathway. If the acceptance ratio is (too) low, the momentum change d p can be made smaller
until the probability for a reactive path is at an optimal value of 40% again [4]. For fast
processes and short paths this procedure works very well [4, 6], because the new trajectory
can be made to stay close to the old one. But the maximum path length is limited by the
chaotic nature of the underlying dynamics, which can be quantified by the Lyaponov exponent
λ. The distance δ between phase space points on two trajectories that are initially very close
will grow exponentially in time: δ ∝ exp(λt). As for simple liquids, the Lyaponov exponents
are of the order of λ ∼ 1 ps−1 [12]; a very small deviation from the initial condition, even on
machine precision level (in double-precision arithmetic,∼10−15), already leads to considerable
differences after a few picoseconds of simulation. For the backward integration in a shooting
move the situation is even worse. Due to numerical round-off errors in the MD integrator, even
a momentum displacement vector d p = 0 will cause a reversed trajectory to diverge from the
old one. The divergence of long trajectories reduces the chance of an accepted path, because
a path that deviates from the old path before it reaches the other stable state will most likely
return to the basin of attraction that it came from and thus fail to be reactive. Only if one is
precisely at the transition state surface, defined by a 50% probability of reaching either stable
state, is there a reasonable (25%) chance of obtaining a reactive trajectory [6]. In general,
however, one is not at the transition surface and the acceptance probability will be much lower.
Therefore, if the process of interest takes longer than a few picoseconds, molecular chaos will
cause a trial trajectory almost certainly to fail to connect the initial and the final stable state.
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2.2. Model system

We illustrate this effect on a model system in three dimensions consisting of N particles
interacting via a Lennard-Jones pair potential truncated and shifted at the minimum, also
called a WCA potential [13]:

VWC A(r) =
{

4ε[(σ/r)12 − (σ/r)6] + ε if r � rc ≡ 21/6σ

0 if r > rc,
(1)

where r is the interparticle distance, and ε and σ specify the depth and the range of the potential,
respectively. Throughout the paper we will use reduced units, i.e. energies in units of ε, lengths
in units of σ , masses in units of m and times in units of τ ≡ (mσ 2/ε)1/2. In addition, two of
the N particles interact with a double-well potential given by

Vdw(x) =




h(4(x − x A)2 − 1) if x − x A < 0.5σ

h(4(xB − x)2 − 1) if xB − x < 0.5σ

0 otherwise.

(2)

Here, x = x2 − x1 is the distance along the x-axis between particles 1 and 2 and is always
positive, i.e. particle 2 is always to the right of particle 1. The reason for using only the
(positive) x-direction in the double-well potential instead of a general r -dependence is that it
enables one to limit the number of particles. The periodic simulation box is therefore elongated
in the x-direction and has dimensions 13.68σ ×5.13σ ×5.13σ . This does not correspond to a
physical situation but the system is only used for illustrative purposes anyway. In equation (2),
x A = 1.5σ is the position of the first minimum, and xB = x A + d is the position of the second
minimum with d denoting the length of the flat barrier. Thus, the two particles can be in
two states, either at a distance x A or at a distance xB . The harmonic potentials that keep the
particles at these distances have a width of σ and a depth h. The above model describes a
system which can jump from one stable state x A to the other stable state at xB by overcoming
a high but rather flat, and hence diffusive, barrier. If h is large enough, the transitions between
the two states become rare and the system will show exponential two-state behaviour.

The system evolves according to Hamilton’s equation in a box with periodic boundaries.
In all our simulations the number of particles was N = 288, the reduced density ρ = 0.8σ−3,
the time step δt = 0.01τ , the total energy E = 446ε, the depth of the harmonic potential
h = 6ε. On average the temperature was T = 0.68. This temperature and density correspond
to a dense fluid. The equations of motion were integrated with the velocity Verlet algorithm
with time step δt = 0.01τ .

2.3. Numerical results

First, we investigated the numerical instability of the system. In figure 1(a) we plotted the x-
position of a particle as a function of time. After 100τ the momenta were reversed and the path
was integrated backward in time. At first, this reversed trajectory followed the old trajectory
closely, but after 10τ it began to deviate due to numerical errors and became completely
different. If one assumes that the model system is a reasonable approximation for liquid
argon, this time corresponds to about 3 ps. Not only was reversing the momenta problematic,
but also the forward integration suffered from instability. A change in momentum of a single
particle by an amount 10−15 led to a complete divergence after 10τ . This means that with a
path length of a 100τ the acceptance probability will be determined by the energy landscape.
If this landscape is rough and the process diffusive, the acceptance for shooting will be low.

Next, we performed a number of standard NV E path sampling simulations [6] on the
system, with the stable state definitions A: x < x1 + 0.4 and B: x > x2 − 0.4. The distance
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Figure 1. (a) Several trajectories visualized by the position x of one particle as a function of
time. The solid curve is a trajectory for which all momenta are reversed after 100τ and the system
is integrated backward in time (dashed curve). Initially, the reversed trajectory closely follows
the original one (solid curve), but begins to diverge after about 10τ . The long-dashed curve is
a trajectory that starts initially at the same phase space point as the solid curve, but with the z-
momentum pz of one random single particle changed by the absolute minimal amount 10−15.
Integrating forward in time, this trajectory diverges as well after 10τ . (b) Acceptance ratio for the
shooting move as a function of barrier width. In all cases the displacement vector was d p = 0.0001.

between the two stable states ranged from d = 3σ to 11σ . The path length was T = 100τ

and the total number of time slices on a path was set to L = 100 for all simulations. For a
shooting move, the displacement vector was chosen from a Gaussian distribution with a small
width d p, and added to the old momentum, while conserving the total linear momentum and
energy [4]. The shooting point time slice was randomly chosen between the last time slice in
A, tA, and the first slice in B , tB . It was hence assumed that recrossing trajectories did not
occur. Using these asymmetric generation probabilities, the acceptance rule becomes

Pacc = min

[
1,

t (o)

B − t (o)

A

t (n)
B − t (n)

A

h A(x (n)

0 )hB(x (n)
t )

]
, (3)

where the superscripts o and n refer to the old and the new paths,respectively. The characteristic
functions for the stable regions, h A(xt) and hB(xt), are equal to unity if xt lies in A or B
respectively, and vanish otherwise. In addition, besides each shooting move, on average ten
shifting moves were attempted with the maximum shift of T /2. To improve the statistics, 2000
short shifts of one time slice (=1τ ) were also performed on average [4, 6].

In figure 1, the acceptance probability for shooting is plotted as a function of barrier width
d . The acceptance probability decreases dramatically with the width, a general problem for
diffusive barriers. The usual remedy for a low acceptance is to decrease the momentum change
d p. However, as mentioned before this does not work for trajectories this long, where even
the smallest possible value of d p, the machine precision, will cause the trajectories to diverge
and will decrease the acceptance. For instance, in a TPS simulation for d = 10σ with d p = 0
we found an acceptance ratio of 20% whereas it should be 100%. This ratio will quickly drop
for larger barriers. In addition, if the total energy and the total linear momentum have to be
conserved, it usually means that the momenta of all particles have to be rescaled to obey these
constraints. Even for d p = 0, rescaling the velocities to a linear momentum of zero will
introduce a change in momentum.
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Figure 2. A schematic illustration of the failure of TPS to sample long trajectories on diffusive
barriers. In the top figure the shooting move is performed on an initial trajectory (solid curve).
Because of molecular chaos, the trial path (dotted curve) will diverge from the initial pathway, and
will be attracted to A again. Therefore it is not reactive. Similarly, if the shooting is done on the
other side of the transition state surface, the paths will be attracted to B instead, also leading to a
nonreactive trajectory. The bottom figure shows what the one-way shooting scheme attempts to
do. The dotted curve is a forward accepted trajectory and replaces the solid curve to the right of
shooting point 1. The dashed line is a subsequent backward accepted move from shooting point
2, and will replace the path to the left of shooting point 2 (both the solid and dashed parts). Thus,
the path is now entirely different from the initial pathway and trajectory space is sampled more
efficiently.

3. Transition path sampling for diffusive barriers

3.1. One-way shooting

In the course of the path sampling we kept track of whether a trial trajectory shot was successful
or not. When it still connected A with B it was denoted as an AB trajectory. The other possible
outcomes were AA, B B , B A, short for trajectories that connected A with A, B with B , B with
A (a reversed trajectory) respectively. Of course the trajectory can also fail to reach either stable
state within a time T ; this is denoted as O. All possible combinations and the frequencies of
occurrence are summarized in table 1 for a TPS simulation for d = 11. In the standard path
sampling algorithm, only the successful AB paths can be accepted. From table 1 it is clear that
the acceptance is rather low, because many trajectories fail to connect A with B but connect
A with A and B with B instead, or fail to reach any of these stable states and remain on the
barrier. It would be very helpful if we could shoot a trajectory from a time slice in just one,
arbitrary, direction, backward or forward in time and accept or reject if that new trial path is
successful (see figure 2). For deterministic trajectories this is not possible because the sudden
change of momenta somewhere along the path would interrupt the otherwise Newtonian NV E
trajectory. The use of stochastic trajectories can eliminate this problem. In fact, in one of the
seminal papers on TPS [2], it is shown that for stochastic (Brownian dynamics) trajectories
the shooting move should be done in a single direction, either forward or backward in time.
However, it is also useful to retain as deterministic a trajectory as possibly—for instance to
be able to calculate microcanonical rate constants [6]. To introduce a little stochastic noise in
an otherwise deterministic trajectory, we make use of the Andersen thermostat [8, 14]. The
Andersen thermostat couples the system to a heat bath which reinitializes the momenta of a
particle according to the Maxwell–Boltzmann distribution with a certain probability. If the
frequency of this reassignment is sufficiently low, the dynamics of the trajectory should not
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Table 1. Probabilities for trajectories to reach the stable states A or B , or stay on the barrier (O)
after a shooting move for a barrier length of d = 11σ . The shooting point was chosen on the barrier,
with a maximum momentum displacement d pmax = 0.0001. The final acceptance probability for
the shooting move was Pacc = 0.0557. The difference between this acceptance ratio and the AB
trajectory number in the table is due to the fraction in equation (3).

Final region
Initial
region A B O

A 0.175 0.0735 0.1345
B 0.0375 0.177 0.0715
O 0.0735 0.1275 0.1275

be altered much, but because of molecular chaos, the trajectory will nevertheless soon diverge
from the initial one. This means that one should only shoot from the neighbourhood of the
barrier, just as is the case with stochastic trajectories [2, 7]. The Andersen thermostat was
invented to perform constant-temperature NV T simulations by coupling to the heat bath, but
one can choose to stay on the constant-energy (NV E) surface by rescaling the kinetic energy
of the particle back to the original value. If the total linear momentum has to be conserved as
well, it is necessary to reinitialize two or more random particles at the same time. Detailed
balance should be obeyed at all times, and if there are any constraints, the components of the
momenta along these constraints should be removed [6]. For isolated systems the angular
momentum can be kept constant as well [6].

The new path sampling algorithm now becomes as follows: start with an initial path of
L time slices connecting A and B (for more details on how to create an initial path see [6]).
Let t (o)

A be the time just before leaving A and t (o)
B the first time the system enters B on the

old path. Now choose a slice t ′ on the barrier between t (o)

A and t (o)

B with a uniform probability
(or with a biasing function). Next, integrate the equations of motion forward to t = T and
backward until time t = 0 using the Andersen thermostat as a stochastic noise generator. If
the new trial path still connects A with B , the shot is accepted with a probability according to
equation (3). If the backward path reaches A but the forward shot fails to end in B , the forward
trajectory is rejected and the old forward part is retained. The old backward path from t = t ′
to 0, however, is replaced by the new backward trajectory, and accepted with the probability in
equation (3). Similarly, if the forward path reaches B but the backward shot fails to end in A,
the forward trajectory is substituted from t = t ′ to T and accepted with the same acceptance
probability (3). Shifting moves are performed as usual [6].

3.2. Numerical results

We tested the new algorithm on the two-state system described in section 2.2 with a large
distance d = 11 to make the system diffusive enough. The acceptance for the original shooting
move is rather low, Pacc ≈ 0.056. In contrast, the acceptance of the forward and backward
Andersen one-way shooting move is much higher, Pacc ≈ 0.55, thus considerably improving
the sampling.

The question arises, however, of whether the Andersen thermostat trajectories are a good
approximation for the deterministic ones. If the frequency of reassigning velocities is low
enough, the dynamical properties such as the diffusion constant should not be affected too
much; see e.g. [14]. In fact, our frequency is rather low, as a two-particle reassignment is done
once every thousand time steps. This corresponds to an update frequency of ν = 0.000 66.
For comparison we plotted in figure 3(a) the correlation function 〈hB (t)〉AB and its derivative
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Figure 3. (a) Comparison between the new one-way Andersen shooting scheme and the original
deterministic algorithm for the correlation function 〈h B(t)〉AB and its derivative 〈ḣ B (t)〉AB (inset).
(b) The logarithm of the autocorrelation function c(n) as a function of the number of simulation
cycles, for sampling with and without the Andersen thermostat. The barrier width d = 11σ . Two
different quantities G were used: the transition time ttr and the particle distance x12 halfway across
the barrier.

〈ḣ B (t)〉AB with and without the Andersen thermostat, where the brackets with subscript AB
denote an average performed in the path ensemble. The agreement is excellent and we expect
the dynamical properties such as the rate constant to be adequately close to the microcanonical
values [14].

One might object that while the new Andersen one-way algorithm has improved the
acceptance probability, the efficiency might not be better because the barrier is only sampled
rarely. This leads to strong correlation between consecutive paths and hence to poor efficiency.
Therefore, we computed the efficiency as in [4] from the autocorrelation function c(n) of the
fluctuation of a quantity G as a function the number n of simulation cycles:

c(n) = 〈δG(0) δG(n)〉AB

〈δG2〉AB
, (4)

where δG(n) ≡ G(n)−〈G〉AB . One can choose many functions for G(n), and here we choose
the transition time ttr = tB − tA, the time that the system spends on the barrier, and the distance
between the two double-well particles x12((tA + tB)/2) halfway across the barrier. A high
efficiency is indicated by a fast decay of the autocorrelation function and in figure 3(b) c(n)

does indeed decay quickly to zero. As in [4] we can estimate the number nc of correlated cycles
by defining a threshold below which the paths are assumed to be uncorrelated, or alternatively
by integrating the autocorrelation function. Integrating the function c(n) leads to an estimate
of nc ≈ 5 for the Andersen scheme and nc ≈ 15 for the original TPS algorithm. Interestingly,
the two chosen functions G(n) give similar estimates for nc.

This analysis suggests that the new scheme is more efficient by a factor of 3 for this
particular system. For more complex processes we expect the TPS with the ordinary shooting
move to break down completely. Indeed, preliminary calculations show that for biomolecular
isomerization there is no acceptance at all when using the original shooting move [15]. In that
case, the Andersen one-way shooting method advocated here might enable proper sampling
of the path ensemble.
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4. Conclusions

We have introduced an adapted stochastic TPS algorithm to sample diffusive barriers, based on
the Andersen thermostat. The new sampling scheme has all the advantages of the original TPS
method, including the microscopic dynamical information, and the freedom from imposing
reaction coordinates, but increases the acceptance probability and hence the sampling efficiency
dramatically. Further improvement of efficiency can be achieved by allowing the path length
to fluctuate, in order to reduce the number of required MD time steps. We will report on this
in a future publication [15].
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